New evidence of magmatic-fluid–related phyllic alteration: Implications for the genesis of porphyry Cu deposits
نویسندگان
چکیده
The phyllic alteration in a number of circum-Pacific porphyry Cu-Au deposits is related to high-temperature saline magmatic fluids. This contradicts the widely used genetic models wherein phyllic alteration formed as the result of mixing between magmatic and meteoric fluids. At the Endeavour 26 North porphyry deposit in eastern Australia, the transition from early potassic to the main-stage phyllic alteration is associated with fluids that with time decline in total salinity, NaCl/KCl, and temperature from ;600 to ;550 8C. Calculated and measured d18O and dD compositions of fluids (5.1‰–8.5‰ d18O, 257‰ to 273‰ dD) confirm a primary magmatic origin for both the early potassic and mainstage phyllic alteration. These results are consistent with other recent studies (e.g., El Salvador, Chile, Far Southeast, Philippines, and Panguna and Porgera, Papua New Guinea) and suggest that, rather than these results being unusual, a major revision of porphyry Cu genetic models is required.
منابع مشابه
Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet
The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China’s largest porphyry copper system, with ∼2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intrude...
متن کاملHydrothermal evolution of the Sar-Kuh porphyry copper deposit, Kerman, Iran: A fluid inclusion and sulfur isotope investigation
Sar-Kuh porphyry copper deposit is located 6 km southwest of the Sar-Cheshmeh copper mine, Kerman Province, Iran. Based on field geology, petrography and fluid inclusions studies, four alteration types have been identified in the Sar-Kuh area. Early hydrothermal alteration formed a potassic zone in the central parts of Mamzar granite/grano-diorite stock and propylitic alteration in its peripher...
متن کاملThe Exploration Significance of Ag/Au, Au/Cu, Cu/Mo, (Ag×Au)/(Cu×Mo) Ratios, Supra-ore and Sub-ore Halos and Fluid Inclusions in Porphyry Deposits: A Review
This paper documents the exploration significance of Ag/Au, Au/Cu, Cu/Mo and (Ag×Au)/Cu×Mo) ratios of the supra-ore and sub-ore halos versus fluid inclusion evolution for 24 Cu, 6 Cu- Mo and 10 Cu-Au porphyry deposits worldwide. The ratios are based only on the economic and mineralized hypogene alteration zones. The results indicate that (Ag×Au)/(Cu×Mo), Au/Cu and Cu/Mo ratios increase with dec...
متن کاملIdentifying Hydrothermal Alteration: Geochemical Particulars based on Lithogeochemical Data from the Kahang Cu Porphyry Deposit, Central Iran
Kahang Cu Porphyry deposit is situated in the central part of a major Iranian magmatic belt, Urumieh-Dokhtar, in central Iran.There are several sub-volcanic stocks (e.g., porphyric granitoids rocks, quartz monzonite, diorite and monzodiorite-monzogranite)within Eocene volcanic and pyroclastic rocks consisting of basaltic, trachy-andesite and dacitic rocks. Hydrothermal alterations at the Kahang...
متن کاملDelineation of hydrothermal alteration Zones for porphyry systems utilizing ASTER data in Jebal barez area, SE Iran
Abstract: The Urumieh-Dokhtar Magmatic Belt (UDMB) is the host of many Iranian Cu porphyry deposits. Southern part of this belt, in the range of geological Jebal barez, has been less investigated because of the mountainous and rough topography and also some security confrontation. Porphyry deposits are associated with hydrothermal alteration zones can be mapped using remote sensing data such as...
متن کامل